Person and context in information seeking: interactions between cognitive and task variables

Bryce Allen and Kyung-Sun Kim
School of Information Science and Learning Technologies, University of Missouri, 20 Rothwell, Columbia, MO, 65211, USA
e-mail: isbryce@showme.missouri.edu, sisltsk@coe.missouri.edu

Person-situation interactionism is an important approach to understanding human behaviour. If applied to information-seeking behaviours, this approach would suggest that such behaviours result from interactions between characteristics of the context in which people are found and their individual characteristics. Three experiments were done to investigate the nature of person-situation interactions in predicting user behaviours when users interact with information retrieval systems, and the performance they achieve in information searches. But, the results showed no significant interactions between personal variables (cognitive style and abilities) and context variables (task accomplished by the users). These results suggest that differences in users’ cognitive characteristics and differences in information tasks operate independently in influencing information seeking.

INTRODUCTION

Information seeking is one type of human behaviour. So, conceptual frameworks used to understand human behaviour should be helpful in explaining information seeking. In other words, to understand information-seeking behaviour we first must understand human behaviour. The interactionist approach to understanding human behaviour seems to have important implications for research into information seeking in context. This approach suggests that human behaviour is influenced by interactions between personal characteristics and the contexts in which people are found. In the case of information seeking, this approach would attempt to understand behaviour by focusing on two classes of variables. The first class includes personal characteristics of users such as cognitive styles and abilities, knowledge, and preferences. The second class includes context characteristics such as the tasks being accomplished by users and the organizational or work setting in which the tasks are being carried out.

The relationships between contexts, situations, and tasks are complex. We view contexts as the socially defined settings in which information users are found. One context might be a work setting such as an office or a factory, another a service setting such as a doctor’s office. Within each of
these broad contexts, different situations occur. Or, to put it differently, individuals may be situated in different ways in the context. Within situations, tasks may need to be accomplished. So, for example, a term paper task may occur in a course-related situation within an academic context. According to this view, tasks can be found within, and also represent, the context within which information-seeking behaviour occurs. This approach to information tasks as being embedded in situations and contexts is similar to that presented by Reid (1).

This type of task that is embedded in user situations and contexts is to be distinguished from those tasks that are required to use information systems (2). For example, the diagnosis task is representative of the medical context, but the database selection task is not representative of that context. In the investigations reported here, the context was an academic community. Situations that would be typical of those in which students would normally be found formed the basis for the research. The tasks that were derived from these situations were typical of student information tasks: finding information for getting into a graduate school, getting a job, completing a term paper assignment, or writing an article in a student newspaper.

According to the interactionist perspective, task characteristics (which represent the socially defined context) should interact with personal characteristics (such as cognitive traits) in influencing behaviour. However, this type of interaction effect has not been consistently documented in information research. This paper addresses the question of whether person/situation interaction effects are important predictors of information-seeking behaviours: i.e., whether the interactionist model of human behaviour helps to explain how people search for information. Our research attempted to test this model focusing on the interactions of personal and task variables in the use of information systems such as Intranets and bibliographic retrieval systems in the academic context.

The implications of this research may have an impact on the direction of future information research. If person/situation interaction effects are found to be important predictors of information behaviours, information research will have to employ complex research designs that analyze users who have different personal characteristics, and who are working on different tasks in different contexts. If, on the other hand, the person/situation effects are not strong predictors of information behaviours, researchers will be able to employ simpler designs that can test the independent effects of personal characteristics and social or task contexts on information-seeking behaviours.

BACKGROUND

Studies of human intelligence, emotions, and behaviour are frequently based on the theoretical foundation of interactionism. This approach tries to explain how people behave in terms of an interaction between personal characteristics and the contexts or situations in which people are found. Person-situation interaction theory suggests, for example, that intelligence (or intelligent information processing) occurs at the interface between persons and situations (3). The situation acts as a stimulus, to which the individual responds with specific behaviours. At the same time, the individual's personal background, abilities, and preferences influence how that person perceives and understands the situation. So the characteristics of the situation interact with the characteristics of the person, to influence how someone learns, reasons, or solves problems.

In educational psychology, and to a lesser extent in clinical psychology, the interactionist perspective is frequently presented as an 'aptitude-treatment interaction' (4). In a typical experiment in educational psychology, aptitudes are measured using tests that indicate existing knowledge, learning styles, or cognitive abilities. The treatment is typically an experimental condition: students may be placed in different types of classes, or be given different types of assignments, or work with different information resources. In such experiments, the interactionist perspective is supported if the output measures (for example, learning or satisfaction) are shown to depend on an interaction between the aptitude measured and the experimental treatment presented.

In studies of emotions such as anxiety and anger, 'state-trait' models represent the interactionist perspective. In this research, experiencing an emotion is traced to an interaction between a personal characteristic (the latent anxiety trait, for example) and situational characteristics that might lead to anxiety (for example, stress). So, feelings of anxiety depend on one's internal propensity to be anxious, and the anxiety-arousing characteristics of the situation in which one finds oneself.

Interactionist models are found in many fields related to and influenced by psychological theory. For example, some studies of interpersonal communication behaviours are based on this perspective (5). In organizational science, Pervin (6) has reviewed what he calls the 'person-situation controversy', and presents two variants of the interactionist approach that seem to be particularly relevant to studies of individuals within organizations.

The actual mechanisms by which personal characteristics interact with
situations are subject to a variety of interpretations. Snow (4) points out that it is possible to see the characteristics of situations and of persons as independent of each other. Under this interpretation, interaction is understood as a ‘fit’ between a person and a situation. Some individuals, because they have specific characteristics, perform well in specific situations because their characteristics fit with those of the situation. As Pervin (6) suggests, interpretations of individuals as goal-directed, and of situations as providing rewards that match those goals, can be viewed as ‘fit’ models. Prominent theories of motivation (7) and human resource management (8) are examples of this approach. In these interpretations, personal and situational variables are seen as essentially fixed, and the outcome is based on an appropriate match between the two.

More dynamic interpretations of the interaction process are also possible. These interpretations relate to the flexibility of individuals or of situations, or of both. Individuals may adapt their behaviour to situations. In this interpretation, individual characteristics include flexibility, which allows other characteristics to change and helps the individuals adapt themselves to respond to situations. Another interpretation that includes a dynamic element recognizes that situations may be flexible enough to adapt to the individuals who are in those situations. For example, a task may be accomplished in a number of different ways, and individuals can select a version of the task situation that corresponds to their personal preferences. Finally, persons and situations may adapt mutually to each other. In this category would be found theories of cognitive social learning (9) or of situated learning (10) that are very influential in education.

Allen (11) suggested that the person-in-situation approach presents opportunities for a more balanced understanding of information behaviours. The background sketched above supports this suggestion. But there have been few attempts to test the interactionist approach in information research. Indeed, we have found no research in information science that unequivocally supports or disproves the interactionist perspective.

One shortcoming of information research in this area is to employ tasks that are derived from the information system rather than from the users’ context in experimental investigations. For example, Korthauer and Koubeck (12) evaluated the effects of an individual’s cognitive characteristics in conjunction with the nature of a hypertext task. The cognitive variables included in this study were level of knowledge on a search topic and cognitive style. The task was manipulated experimentally by varying question organization. In this experiment the ‘task’ that was being varied was not the context in which users were involved, but rather an internal task of finding information using two different means of data presentation. As a result this paper (and others like it) do not provide an appropriate test of the interactionist model.

In a study conducted by Verheij, Stoutjesdijk, and Beishuizen (13), however, a context-related task variable was manipulated to provide different contexts for information behaviours. In a hypertext system, Verheij and his colleagues investigated effects of learning styles and tasks (specifically, a search task vs. an exam preparation task) on search behaviours. They found that the effects of learning styles on behaviours were not consistent across tasks. These findings suggest that there might be an interaction between cognitive and task variables in their research. Unfortunately, no report of a hypothesis test of the interaction effect was found in their paper, so the implication of their investigation for the interactionist perspective is unknown.

This discussion leads to the expectation that the person-situation interaction perspective should have some explanatory or predictive power in studies of information behaviours. A reasonable hypothesis, drawn from this body of theory and research, would be that the characteristics of the context in which people are working (for example, the task they are accomplishing) would interact with their personal characteristics (for example, cognitive styles and abilities) to influence how they use information systems to find information. Three experiments tested this hypothesis, using tasks drawn from the academic setting.

EXPERIMENT 1
Methods
Complete details of the methods used and analyses employed in this research may be found in Kim (14). Forty-eight students participated in this experiment. All of them were undergraduate students of various majors at the University of Texas, and were offered monetary compensation for their participation. The personal characteristic that formed the basis for this investigation was cognitive style. Cognitive style is defined as an individual’s characteristic and consistent manner of processing and organizing what he or she sees and thinks about (15). It has been found that cognitive style influences the manner in which individuals prefer to learn and receive instructions (16). In this study, first, the participants were given the Group Embedded Figures Test (GEFT; 17), and classified as either field-dependent (FD) or field-independent (FI) depending on their scores on the test. (The FDs tend to be dominated by salient cues and perceive things rather holistically. The FIs are less dominated by the most obvious
or salient cues, and tend to make a great use of mediational process activities such as analyzing and structuring). These decisions were made on the basis of the norm provided in the GEFT Manual (18). Then, an individual lab session was arranged for each participant. In a lab environment, the participant was assigned two search tasks of different types: factual information search task (a task of this type requires the searcher to find a piece of factual information for an item known to exist, which provides a specific answer to the question given) and topical information search task. (A task of this type requires the searcher to find more than one piece of information related to the topic given and regarded useful to the searcher). The participants were instructed to find information on the World Wide Web to answer questions given, and to make a bookmark of each Web page where they could find an answer to those questions. In the factual information search task, there existed a Web page providing the correct answer to the question given, and the participants were asked to continue their search until they located the Web page and to make a bookmark of it. In the topical information search task, the participants were told to make bookmarks of more than one Web page that they found relevant to the topic given. Analysis of the data collected was completed using ANOVA.

Findings

In this experiment, the results suggested that cognitive styles affected search performance, measured by the average length of time spent and the average number of nodes visited for the completion of a task. Task types, however, did not seem to have a significant effect on these search performances. Further, the interaction effect between cognitive styles and task types was not significant. When the use of navigational tools was considered, the results seemed to indicate that cognitive styles as well as task types had an effect on the use of embedded links, although again the interaction effect between cognitive styles and task types was not significant. In the following tables we present data on the significant direct effects of cognitive styles and tasks on search performance, to illustrate the variables in which interaction effects might have been found.

Participants with field-dependent cognitive style tended to spend longer than those with field-independent cognitive style to find a piece of information in both tasks (factual information and topical information search tasks). The interaction between cognitive style and task types, however, was not significant ($E(1,46) = .855, p > .35$).

Participants with field-dependent cognitive style tended to visit a higher number of nodes than those with field-independent cognitive style in both

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Dependant</td>
<td>140.2</td>
<td>98.4</td>
</tr>
<tr>
<td>Field Independent</td>
<td>89.1</td>
<td>47.8</td>
</tr>
</tbody>
</table>

$E(1,46) = 5.232, p < .03$

Table 1: Search time (sec.)

When the use of navigational tools was considered, the results seemed to indicate that cognitive styles as well as task types had an effect on the use of embedded links. The interaction effect between them was not significant ($E(1,46) = 1.67, p > .202$), however. Participants with field-dependent cognitive style tended to use embedded links more frequently than did those with field-independent cognitive style in order to find a piece of information.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Dependant</td>
<td>10.2</td>
<td>6.8</td>
</tr>
<tr>
<td>Field Independent</td>
<td>7.4</td>
<td>2.7</td>
</tr>
</tbody>
</table>

$E(1,46) = 3.38, p = .07$

Table 2: Search nodes visited

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Dependant</td>
<td>5.9</td>
<td>3.3</td>
</tr>
<tr>
<td>Field Independent</td>
<td>4.4</td>
<td>1.3</td>
</tr>
</tbody>
</table>

$E(1,46) = 4.38, p < .05$

Table 3: Embedded links used

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fact search</td>
<td>5.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Topic search</td>
<td>4.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>

$E(1,46) = 4.57, p < .07$

Table 4: Embedded links used
Participants tended to use embedded links more frequently in the factual information search task than in topical information search task.

EXPERIMENT 2

Methods

The methods used in this experiment were outlined in detail in Allen (19). Eighty volunteer students from the general student body of the University of Missouri participated in this experiment. In this experiment, the personal characteristics studied were cognitive abilities. A cognitive ability is a characteristic or trait that enables people to do things with their minds. The general construct of ‘intelligence’ is seen as being composed of a number of inter-related but distinct abilities, all of which involve cognitive processes (20). Students were given a battery of four cognitive ability tests, drawn from the Kit of Factor-Reference Cognitive Tests (21). The Maze Tracing Speed Test and the Map Planning Test are tests for spatial scanning ability, and the Number Comparison Test and the Identical Pictures Test are tests for perceptual speed. All participants were placed in the ‘high’ or ‘low’ categories of abilities based on a median split of scores achieved on these tests.

The tasks used in this experiment were presented in the following instructions. The term paper task condition was presented as follows:

A few minutes ago you read an article on a topic. Now, assume that you are working a term paper assignment for one of your classes, which requires you to complete a 10-page paper on this topic. To do this, you want to find additional information about the topic. You will be searching an experimental information retrieval system to find a few good articles about the topic that you can include in your term paper.

The newspaper article task condition was presented as follows:

A few minutes ago you read an article on a topic. Now, assume that you have been asked to write an article in the student newspaper on this topic. To do this, you want to find additional information about the topic. You will be searching an experimental information retrieval system to find as many articles as you can about the topic so that you can write a well-informed article.

Analysis was completed using mixed-factors ANOVA, with tasks treated as a random effect.

Findings

In this experiment there were a number of findings that showed that cognitive abilities have a direct effect on search outcomes. In none of these instances, however, was there a significant effect for task, or a significant interaction effect between the individual characteristics and the task characteristics. In the tables presented below, the significant main effects of cognitive abilities are presented, to illustrate the variables for which interaction effects were sought.

Participants with lower levels of spatial scanning (as measured by scores on the map planning test) did higher precision searches than participants with higher levels of spatial scanning. In this analysis, the interaction between ability and task effects was not significant ($F(1.67)=.00, p>.97$).

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low spatial scanning</td>
<td>.35</td>
<td>.15</td>
</tr>
<tr>
<td>Low spatial scanning</td>
<td>.29</td>
<td>.11</td>
</tr>
</tbody>
</table>

$F(1.1)=2877, p<.02$

Table 5: Precision

Participants with lower levels of spatial scanning (as measured by scores on the map planning test) did lower recall searches than participants with higher levels of spatial scanning. In this analysis, the interaction between ability and task effects was not significant ($F(1.67)=.01, p>.92$).

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low spatial scanning</td>
<td>.31</td>
<td>.16</td>
</tr>
<tr>
<td>Low spatial scanning</td>
<td>.37</td>
<td>.16</td>
</tr>
</tbody>
</table>

$F(1.1)=289, p<.04$

Table 6: Recall

There were several variables in this research that were associated with either precision or recall. For example, the number of records viewed was highly correlated with recall, while the time taken to complete the search was correlated with precision. In the analysis of these variables, the pattern established in Tables 5 and 6 was repeated. There were significant effects of levels of cognitive ability (both spatial scanning and perceptual speed) on these search behaviours, but there were no significant interactions between the cognitive abilities and the task variable.

In addition to monitoring search behaviour and assessing search outcomes, this experiment examined specific search tactics. One of these, labeled ‘search vocabulary learning’, was the practice of introducing into
subsequent search iterations the vocabulary viewed in earlier search iterations.

Participants with lower levels of perceptual speed (as measured by scores on the identical pictures test) did fewer searches in which they employed previously viewed vocabulary in subsequent search iterations than participants with higher levels of perceptual speed. This indicates that a lower level of learning of search vocabulary during the search process occurred among participants with lower perceptual speed. In this analysis, the interaction between ability and task effects was again not significant (F (1,76) = .00, p > .95).

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low perceptual speed</td>
<td>.14</td>
<td>.17</td>
</tr>
<tr>
<td>Low perceptual speed</td>
<td>.20</td>
<td>.18</td>
</tr>
</tbody>
</table>

F (1,1) = 625.04, p < .03

Table 7: Search vocabulary learning

There were two three-way interactions in this research, between system features, task, and cognitive abilities. These three-way interactions were analyzed to see if they provided evidence of a person-situation interaction. The detailed analyses are presented in Allen (19), and show that the three-way interactions were best interpreted as resulting from an ability by system interaction within task.

EXPERIMENT 3

Methods

The two cognitive abilities tested in Experiment 2 were also tested in this investigation and the two tasks used in Experiment 2 were repeated here. Another eighty students from the general student body of the University of Missouri participated. The main experimental difference between Experiments 2 and 3 was that in Experiment 3, the system configurations of the information systems were not controlled, but were user-selected.

Findings

In this experiment there were a number of findings that showed that cognitive abilities have a direct effect on search outcomes, and a number of findings that showed that the task accomplished has a direct effect on search outcomes. There were, however, no significant interaction effects between the individual characteristics and the task variables. Again, the following tables present the main effects of task and cognitive ability on search behaviours, to illustrate the areas in which interaction effects were sought, but not found.

Participants with lower levels of spatial scanning (as measured by scores on the map-planning test) did higher precision searches (on average) than participants with higher levels of spatial scanning. In this analysis, the interaction between ability and task effects was not significant (F (1,67) = .01, p > .92).

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low spatial scanning</td>
<td>13.7</td>
<td>8.7</td>
</tr>
<tr>
<td>Low spatial scanning</td>
<td>10.7</td>
<td>6.1</td>
</tr>
</tbody>
</table>

F (1,1) = 335, p < .04

Table 8: Precision (Measured by search time in minutes)

Participants who completed the newspaper article task achieved higher recall than participants who completed the term paper task. In this analysis, the interaction between ability and task effects was not significant (F (1,76) = .79, p > .37).

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newspaper article</td>
<td>42.8</td>
<td>35.85</td>
</tr>
<tr>
<td>Term paper</td>
<td>29.3</td>
<td>19.51</td>
</tr>
</tbody>
</table>

F (1,76) = 3849, p < .04

Table 9: Recall (Measured by number of records viewed)

Participants who completed the newspaper task did more searches in which they employed, as search terms, vocabulary that had been presented to them in records than participants who completed the term paper task. This result indicates that the newspaper task was more conducive to the learning of search vocabulary. In this analysis, the interaction between ability and task effects was not significant (F (1,72) = .83, p > .36).

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newspaper article</td>
<td>.19</td>
<td>.2</td>
</tr>
<tr>
<td>Term paper</td>
<td>.11</td>
<td>.15</td>
</tr>
</tbody>
</table>

F (1,72) = 4.47, p < .04

Table 10: Vocabulary learning

DISCUSSION

The experiments reported here found no evidence to support the hypothesis that person/situation interactions explain information behaviours in an academic context. The experimental designs included reliable measures of personal cognitive characteristics. Cognitive style, as measured in Experiment 1, has been validated in many settings, and has been shown to predict a large number of differences in basic cognitive behaviours, including the interaction of users with information systems (22, 23, 24). Cognitive abilities, measured by standard tests in the other two experiments, have also been shown to be valid predictors of achievement in a wide variety of settings, including information behaviours (25, 26). The tasks investigated in these experiments were ecologically valid, in the sense that they were tasks that students would typically accomplish using information systems in an academic setting. Although they were induced in laboratory settings, they appear to have been perceived as genuine tasks. The fact that participants in these experiments behaved differently depending on the task they were given indicates that these tasks were taken seriously by the users.

The statistical analysis of the results of these experiments should have identified any significant interactions between cognitive and task variables. The power of these statistical analyses was approximately 0.6 in all three experiments. In other words, these investigations should have isolated at least 60% of the significant interactions. Analysis of the direct effects of personal characteristics and tasks on information behaviours and outcomes showed that some of these information behaviours (and the outcomes of the behaviours) were influenced by personal characteristics, some by tasks, and some by both. But the consistent finding is that there was no interaction between personal and task characteristics. In all of the data, derived from three different experiments accomplished in different settings, using different predictor variables and a wide range of outcome variables, there was no instance of a statistically significant interaction effect between user and task characteristics. Since no such interactions were found, we feel justified in inquiring further about why these interactions were not found in these three experiments. This finding is difficult to explain from the results of the experiments themselves. We can, however, eliminate some possible explanations, and suggest some that might be more likely.

One possible explanation for the lack of a statistically significant person/situation interaction is that users adjust over time to the situation in which they are placed. In other words, regardless of users’ cognitive characteristics, the task would lead to an adjustment in the responses of the users. This phenomenon would be reflected in the data by a period at the beginning of each search in which personal characteristics influenced information behaviours, then a transitional period while the adjustment occurred, then a period towards the end of each search in which task characteristics influenced information behaviours. Such a pattern of effects could produce the statistical results reported above. But this ‘adjustment’ explanation seems improbable to us. Having analyzed over 200 detailed transaction logs created during these experiments and 48 recordings of information searches, we see no consistent pattern of transition from personal to situational influences. All of our data were derived from brief searches (typically less than 30 minutes). It seems unlikely that in these brief interactions there would be time for a great deal of adjustment from person to situation effects.

A more likely explanation is that the tasks that our users were accomplishing did not hold a high level of motivation for the users. Although our users were paid to accomplish the information searches, this motivation may be weaker than the motivation produced by a work-related or personally significant task. We observed several instances in which users started off in their searches with their task in mind then saw something interesting that distracted them from the task for some of the duration of the search. Unless a context has a very high motivation level, it may not dictate the search behaviour in a consistent or thorough manner. Our users were employing information systems that were rather more specialized in content than general-purpose database or hypertext systems. But these systems still contained a wide enough variety of information that users could find themselves distracted by a topic of interest to them personally, although not germane to the task. If we generalize from these observations, we might speculate that tasks (and other aspects of the contexts in which users are found) have an effect that varies with the level of motivation they induce. If the context is sufficiently motivating, contextual variables may dominate the effects on information behaviours. When the characteristics of the context produce lower levels of focus and motivation, or are viewed as being neutral to the user, personal characteristics can become the prominent influence on information behaviours.

Another variable that is related to motivation is problem-solving style. Problem solving is defined as cognitive processing directed toward achieving a goal, including problem representation and problem solution (27). Problem-solving style is defined as a tendency to respond in a certain way while addressing problems (28). It is possible that our users were exhibiting different problem-solving approaches, one of which produced a high level of task focus. If this is the case, the statistical results obtained
could be explained by differences in problem-solving styles among the participants. In future research, we intend to investigate problem-solving styles as predictors of information behaviours, and to search for interactions between this individual difference variable and situational variables that might influence the information behaviours of users.

It is also possible that the interaction effects predicted by person/situation interactionism theory may be found in outcome variables other than those studied in these experiments. As indicated in the ‘Background’ section above, a great deal of the research into person/situation interactionism has focused on emotional variables such as anger or anxiety. We did not measure such variables, because our focus was on information behaviours associated with using information retrieval systems, and on the outcomes associated with those behaviours. It seems possible, however, that research into affect might identify more interaction effects.

CONCLUSIONS

These findings suggest that information-seeking behaviours are not reliably predicted by interactions between cognitive variables and task variables in an academic context. Apparently, cognitive variables such as cognitive style and abilities are important predictors of users’ information behaviours and of their performance in using information systems. In addition, the tasks that users are performing influence the users’ information behaviours and their performance. But the interaction effects have not been found (thus far) in information research. This suggests that information research in the future can employ simpler designs that investigate solely the independent effects of personal and contextual variables, rather than the more complex designs required to identify the nature of the interaction effects.

The implications of this research for the design of academic information systems and services are more complex. If these findings are supported by future investigations, it would appear that designers have a choice. They can create systems that will be tailored either to tasks accomplished in context, or to the personal characteristics of users. In these investigations, we found that personal (cognitive) characteristics were more likely to influence information behaviours than task characteristics. It would appear that designers can begin by diagnosing the nature of the context and the tasks accomplished within that context, and in particular the influence that the context is likely to have on user motivation. If the context and tasks provide a high degree of motivation, information systems and services can be tailored to the task in context. If the task in context is not highly motivating, information systems and services can be tailored to different personal characteristics such as cognitive style and cognitive abilities.

Interactionism is a powerful explanatory framework in the social sciences, and seems on the surface to provide a rich and powerful theory for understanding information behaviour. The fact that experimental results thus far have failed to find evidence for interactions between personal characteristics and task characteristics provides a challenge for future investigations of information seeking in context.

REFERENCES

